
Characterizing Densities from Semi-Analytical
Models of Galaxy Formation

Alex Ji
Statistics

Email: alexji@stanford.edu

Amir Kavousian
Civil Engineering

Email: amirk@stanford.edu

Steve Lesser
Computer Science

Email: sklesser@stanford.edu

I. INTRODUCTION

The naive way to model galaxy formation is a computa-
tionally intensive process involving large N-body simulations
of hydrogen atoms interacting in a very complex manner.
This is not feasible for modeling a large number of galaxies
in a variety of environments, which is needed to compare
theoretical models of galaxy formation to empirical obser-
vations from galaxy surveys and to discern which physics
processes affect what galaxy properties. Astrophysicsts have
dealt with these issues by developing semi-analytical models
(SAMs) where the important stages of galaxy formation are
filled in with parameterized analytic “recipes” describing the
underlying physics. The SAM takes input parameters and
outputs a population of galaxies. To summarize a population
of galaxies, astrophysicsts usually do something similar to
histogramming the various galaxy properties. For example, one
can histogram the log-mass of a population of galaxies, which
is called the “stellar mass function”. The height of each bin is
then a summary statistic of the galaxy population. (There are
standardized ways of normalizing these counts in a given bin
width.)

Fig. 1. Various stellar mass functions from the same semi-analytical model
showing the variance of the SMF despite all corresponding to the same
luminosity function.

One can use a procedure like the Metropolis algorithm to
find the parameters that fit a particular histogram, also called
a data set. Once we fit parameters to a particular data set, we
are interested in the predictions of the SAM for another data
set. We can take the posterior distribution of SAM parameters
from fitting to the first data set and sample from this posterior

distribution, running the parameters through the SAM to create
a set of possible universes, each with their own stellar mass
function.

In this project, we have taken a sample of 1000 z = 1
stellar mass functions, each with 24 log mass bins, and each
predicting an identical z = 0 K-band luminosity function.
These stellar mass functions populate a 24-dimensional space,
where each dimension is the height of the stellar mass function
in a given mass bin. Our goal is to model the density of this
distribution. Once we have a density, we can calculate the
probability of the true universe occuring in this model. The
ability to validate a SAM in different data sets is extremely
valuable, as it can further constrain SAM parameters and
suggest where a SAM incorrectly models galaxy formation
physics.

II. DIMENSIONALITY REDUCTION

The Stellar Mass Function (SMF) data is highly correlated
in some dimensions (see figure 2). To reduce the dimensional-
ity of the model and to enable better visualization of the data,
we performed Principal Components Analysis (PCA).

The results of our PCA show that using only the first three
principal components, we can explain 90% of the variance in
SMF data (see figure 3).

A. Details of Principal Components Analysis

The calculation is done by a singular value decomposition
(SVD) of the centered and scaled data matrix. Compared with
using eigenvalues of the covariance matrix, the SVD method
generally offers more numerical stability and accuracy. The
SVD of the N×p matrix X is given by:

X = UDV T

Where U and V are N×p and p×p orthogonal matrices
with the columns of U spanning the column space of X , and
the columns of V spanning the row space. D is a p×p diagonal
matrix, with diagonal entries d1 ≥ d2 ≥ ... ≥ d2 ≥ 0 singular
values of X . The eigenvectors vj (columns of V) are principal
component directions of X . The first principal component
direction v1 has the property that Z1 = Xv1 has the largest
sample variance amongst all normalized linear combinations
of the columns of X. The subsequent principal components
are calcualted in the same way [5]. We used the first three
principal components to fit our models as three components

Fig. 2. Histograms of Stellar Mass Density data; and correlations between
different density distributions.

Fig. 3. PCA results on SMF data: the eigenvalues drop quickly as more
principal components are added; as a result, using only the first three principal
components, we are able to explain 90% of the variability in SMF data.

explained 90% of the variance in our data. Note, this assumes
our observed stellar mass function has variability similar to
predictions from the SAM.

III. DISTRIBUTION FITTING METHODS

Our goal is to parameterize the probability density of our
Semi Analytical Model. Since the distribution has unclear
structure we used unsupervised learning for density estimation.

A. K-Means Clustering

One unsupervised method we investigated was k-means
clustering. We did not know the number of clusters we should
use so we tried many different cluster sizes and evaluated their
effectiveness using the p-value of chi-squared independence

test between training data and test data. To perform k-means
clustering we treated each stellar mass function as a single 3-
dimensional point using PCA components. We then performed
standard k-means clustering on a subset of all of our available
generated points. We tried various ratios of splitting up our
data into training and test sets and settled on a random 70%
of our points being used for training and the remaining 30%
used for testing. To predict density values for the test set
we clustered the test points using the trained clusters and
let the density be proportional to the number of points in a
cluster. Once clusters were found we planned to fit continuous
distributions to each individual cluster.

We were interested in whether our k-means clusters were
stable predictors of the probability density function. To deter-
mine this we used a chi-squared test on the ratio of the size
of each cluster to the total size of the either the training set
or the test set. Let k be the number of clusters, M be the test
set size, N be the training set size, mi be the fraction of test
points found in cluster i, and ni be the fraction of training
points found in cluster i

X2 =

k∑
i=1

(Nmi −Mni)
2

niNM

We then took the P-value of our chi-squared value as a
performance metric of the k-means as a good fit or bad fit
where the P-value is defined as

P = 1− P (X2 <= X2
k−1)

For each candidate cluster size k we ran k-means for 100-
1000 iterations of random separations of training and test data.
We then histogramed the resultant P-values of the chi-squared
performance metric as seen in III-A. We can see there is a
wide variance in most of the p-value distributions implying
that the k-means clustering is highly dependent on which
points are split into the training set versus the test set. We can
see when k is 14 the p-values reach essentially their maximum
average and have relatively few iterations with P-values less
than 0.4.

Fig. 4. Histograms of the chi-squared P-values for repeatedly running k-
means clustering with different numbers of clusters. Cluster size starts at 5
on the top left and increases to the right continuing again at the beginning of
each row. Due to the high variance in p-values we determined k-means was
not an acceptable method for density estimation.

However, even with the best k-values we think k-means
is not stable enough to definitely show a strong and stable
probability density model hence we do not consider it to be
appropiate as a final modeling tool.

B. Kernel Density Estimation

In order to have a definitely accurate distribution we im-
plemented kernel density estimation. However, this method is
slow and inefficient due to requiring the complete training
dataset to produce a single density value as opposed to
requiring a smaller number of parameters such as in mixture
of gaussians. It also generally overfits the density.

Kernel density estimation places a small kernel, in our
case a multivariate gaussian, on each data point and then
computes an average probability based on existing data and
a bandwidth matrix H . Let {x1, x2, ..., xn} be an independent
random sample drawn from f(x). The general form of the
kernel estimator of f(x) is

fH(x) =
1

n

n∑
i=1

KH(x− xi)

where KH(x) = |H|−1
2 K(H

−1
2 x), K(x) is a multivariate

gaussian function, and H is a symmetric positive definite d×
d dimensional matrix known as the bandwidth matrix. After
principal component analysis, the dimensionality of our data
is 3. We used a diagonal bandwidth matrix and computed the
values on the diagonal based on the assumption that data was
observed approximately sampled from a multivariate normal
density. This is a strong assumption our data does not satisfy,
but it still gives a reasonable result. The ith diagonal of H is
calculated described by [?]zhang04) as

hi = σi
4

(d+ 2)n

1/(d+4)

where σi is the standard deviation of the ith variate and d
is the dimensionality of the data. The probability density can
be seen in the level contours of figure 7.

C. Mixture of Gaussians

As our third density estimation method, we decided to use
mixture of gaussians (abbreviated GM). We used the first 3
principle components to fit this model. We used the MAT-
LAB function gmdistribution.fit to fit the mixture of
gaussians, which gives us a density function. To choose k, we
decided to compare the log-likelihoods on a hold-out test set
(30% of the data). In figure 5, we plot the log likelihood of
the test set and the training set. We determine the number of
clusters by finding an elbow in the likelihood. In our data, this
occurs at k = 7.

One might expect that when you have reached an optimal k,
adding an additional gaussian component will not significantly
change the resulting distribution. To test this hypothesis, we
needed a way to compare two different distributions. We
decided to use Kullback-Leibler divergence (KL divergence).
The KL divergence between two distributions P (X) and
Q(X) is defined as follows:

KL(P ‖ Q) =
∫
P (x1, x2, x3)log

P (x1,x2,x3)
Q(x1,x2,x3)

dx1dx2dx3

Numerically calculating the three-dimensional integral with
MATLAB quad proved incredibly time consuming, so we
decided to use Monte Carlo integration with 10000 points and
report the error. This method introduces some error because
a uniform sample of a distribution with many features may
not adequately sample all the features, however it makes the
numerical calculation tractable.

Fig. 5. Left: log-likelihood of test set. Right: log-likelihood of training
set. Blue line represents the mean log likelihood over 100 runs of mixture
of gaussians. Red lines represent +/- one standard deviation from the mean.
Green line represents maximum log likelihood. Note that at k = 7 (vertical
dotted line), the log likelihood for the test set begins to flatten, so we choose
k = 7 for our model.

Fig. 6. The results of the KL divergence to compare GMs with different
number of clusters. Each plot shows the results of the KL divergence of one
specific k GM model (indicated on the y-axis) against models with k =
1, 2, 3, ..., 15 clusters. As the plots show, the KL divergence bottoms out
around k = 7 and stays that way for higher k. This means increasing k does
not significantly change the probability distribution and confirms k = 7 is a
good number of clusters for our GM.

We computed GM models for k = 2 to k = 15 and
calculated the KL divergence between all models, plotted in
figure 6. Note that when the GM has k ≥ 7, the KL divergence
is flat for k ≥ 7, suggesting that the probability distribution
does not change significantly after a 7-component model. The

probability density can be seen in the level contours of figure
7.

D. Dirichlet Process

Using the Dirichlet process as a prior for the number and
relative weighting of gaussians in a gaussian mixture model
allows us to have an arbitrary number of gaussians in our
prior for the distribution we want to estimate. This allows
us to avoid the process of tuning the number of clusters [3].
Markov Chain Monte Carlo (MCMC) methods can be used to
find this Dirichlet mixture model. We used algorithm 7 from
Neal’s paper [4] with prior distributions for new gaussians set
according to [2], and we quickly describe the algorithm here.

The state of the Markov chain is determined by a cluster
assignment for each data point and the mean and covariance
matrix parameters for all gaussians containing a data point.
To step the Markov chain, the algorithm essentially does two
things. First, it redistributes the points into different clusters
using Metropolis-like probabilities. With some probability,
points can be put into a randomly initialized new cluster.
Second, we use a maximum-likelihood estimate to update the
mean and covariance matrix of each cluster.

We encountered an underspecified part of these Markov
chain algorithms. The Mixture of Gaussians algorithm does
fuzzy clustering, so it gives the probability of each data point
being in a given gaussian. However, all MCMC algorithms
we found for the Dirichlet process gaussian mixture model
(DPGMM) used hard clustering, since the state of the Markov
chain is determined by the cluster label of each point. When a
cluster has less than p = 3 (number of dimensions) points in it,
then the maximum likelihood covariance estimate is singular.
To sidestep this problem, we simply did not reestimate the
covariance matrix when there were too few points in the
cluster.

Initializing the Markov chain with k = 7 and a distribution
given by a gaussian mixture fit, we ran the MCMC while
checking whether the distributions given by the last three
Markov states were significantly different as determined by
KL divergence. However our results showed that our Markov
chain converged whenever the Monte Carlo integration error
was large, rendering the results unreliable. Given the time
constraints, we decided to run the Monte Carlo simulation
for 100 times and fit our model based on that. The probability
density can be seen in the level contours of figure 7.

IV. CONCLUSION AND NEXT STEPS

We have done a survey of useful methods for density
estimation. We investigated a simple k-means model, a kernel
density estimation model, a Gaussian mixture model, and a
Dirichlet process mixture model.

For this particular data, we found that a mixture of Gaus-
sians model with k = 7 works fairly well. Slightly increasing
k does not significantly change the distribution, as seen by
KL divergence. Additionally, the Dirichlet process Gaussian
mixture model provides an automatic way of determining k.
We are fairly confident that our Gaussian mixture with k = 7

accurately estimates the density, and we can compute values
from the density very quickly.

Now that we have a density, the next step is to consider
the observed stellar mass function from our universe to this
probability density. We can find the magnitude of the density
for the observed universe, and in future work we will find a
way to interpret that number to constrain the underlying semi-
analytical model.

Thank you to Richard Socher for his advice on exploring
Dirichlet processes for density estimation, Dr. Yu Lu for pro-
viding the data and useful discussions, and the rest of the CS
229 course staff for their general advice and encouragement.

REFERENCES

[1] X. Zhang, M. King, R. Hyndman. Bandwidth Selection for Multivariate
Kernel Density Estimation using MCMC, 2004.

[2] C. Rasmussen. The Infinite Gaussian Mixture Model, Advances in Neural
Information Processing Systems 12, MIT Press, 2000.

[3] Y. Teh. Dirichlet Process, Encyclopedia of Machine Learning, Springer,
2010.

[4] R. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture
Models, Technical Report No. 9815, Department of Statistics, University
of Toronto, 1998.

[5] T. Hastie, R. Tibshirani, Robert. The Elements of Statistical Learning,
Springer, 2011.

[6] Y. Lu, H. Mo, M. Weinberg, N. Katz. A Bayesian approach to the semi-
analytic model of galaxy formation: methodology, Monthly Notices of
the Royal Astronomical Society 416, 2011.

Fig. 7. Level contours of variuos density functions including from top to bottom: kernel density estimation, mixture of Gaussians with k = 7, and Dirichlet
process. Point colors represent different Gaussian components. Note the similarity to kernel density estimation with both mixture of Gaussians and Dirichlet
process despite them containing many fewer parameters and being much more efficient.

